metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hemipiperazinediium bis(pyridine-2,6dicarboxylato- $\kappa^3 O.N.O'$)gallate(III) pyridine-2,6-dicarboxylic acid dihydrate

Masoud Rafizadeh,* Andva Nemati and Zohreh Derikvand

Faculty of Chemistry, Tarbiat Moallem University, Tehran, Iran Correspondence e-mail: m_rafizadeh6@yahoo.com

Received 25 August 2008; accepted 11 September 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.099; data-toparameter ratio = 15.9

The asymmetric unit of the title compound, $(C_4H_{12}N_2)_{0.5}$ $[Ga(pydc)_2]$ ·pydcH₂·2H₂O, where pydcH₂ is pyridine-2,6dicarboxylic acid, C7H5NO4, contains one half of a centrosymmetric piperazinediium dication, one anion, one uncoordinated pydcH₂ molecule and two uncoordinated water molecules, one of which is disordered over two sites in a 1:1 ratio. In the anion, the Ga^{III} ion is coordinated by four O atoms [Ga - O = 1.9706 (16) - 2.0494 (15) Å] and two N atoms [Ga-N = 1.9660 (18) and 1.9709 (17) Å] from two pydc ligands in a distorted octahedral geometry. The crystal structure exhibits intermolecular O-H···O, N-H···O and O-H···N hydrogen bonds and π - π interactions [centroidcentroid distances of 3.5359 (13) and 3.6550 (14) Å].

Related literature

For self-assembling systems involving pydcH₂, see: Aghabozorg et al. (2006a,b). For related complexes of the pyridine-2,6dicarboxylate ligand with transition metals, see: Rafizadeh et al. (2005, 2006); Rafizadeh & Amani (2006); Aghabozorg et al. (2007, 2008). For details of the synthesis, see: Sheshmani et al. (2006).

Experimental

Crystal data

(C ₄ H ₁₂ N ₂) _{0.5} [Ga(C ₇ H ₃ NO ₄) ₂	$\beta = 80.0391 \ (10)^{\circ}$
$C_7H_5NO_4 \cdot 2H_2O$	$\gamma = 86.9150 \ (11)^{\circ}$
$M_r = 647.16$	$V = 1268.74 (10) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 8.6434 (4) Å	Mo $K\alpha$ radiation
b = 11.8582 (5) Å	$\mu = 1.17 \text{ mm}^{-1}$
c = 13.7907 (6) Å	T = 120 (2) K
$\alpha = 65.7151 \ (10)^{\circ}$	$0.25 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1998) $T_{\min} = 0.749, \ T_{\max} = 0.807$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.099$ S = 1.006067 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4 B ···O13 ⁱ	0.92	1.84	2.754 (3)	169
N4−H4 <i>C</i> ···O14	0.92	1.94	2.818 (4)	160
N4−H4 <i>C</i> ···O14′	0.92	1.85	2.681 (4)	150
O9−H9 <i>O</i> ···O8 ⁱⁱ	0.89	1.90	2.710 (2)	150
O11−H11 <i>O</i> ···O8 ⁱⁱ	0.87	1.91	2.725 (2)	155
$O13 - H13A \cdots O4$	0.97	1.88	2.823 (3)	163
$O13 - H13B \cdot \cdot \cdot O2^{iii}$	0.92	1.84	2.765 (3)	175
$O14-H14A\cdots O10$	0.91	1.95	2.798 (5)	153
$O14-H14B\cdots O1^{iv}$	0.96	2.15	2.974 (5)	143
$N4 - H4C \cdot \cdot \cdot O12^{ii}$	0.92	2.50	2.863 (3)	104
O9−H9 <i>O</i> ···N3	0.89	2.20	2.678 (3)	113
O11−H11 <i>O</i> ···N3	0.87	2.22	2.690 (2)	114

13018 measured reflections

 $R_{\rm int} = 0.024$

382 parameters

 $\Delta \rho_{\rm max} = 0.86 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.84$ e Å⁻³

6067 independent reflections

5263 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL: molecular graphics: SHELXTL: software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2438).

References

- Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006a). Z. Anorg. Allg. Chem. 632, 2058-2064.
- Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Nakhjavan, B. (2006b). Acta Cryst. E62, m2371-m2373.
- Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921.
- Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Crvst. E64. m374.
- Bruker (1998). SMART and SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.
- Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90-m91.

- Rafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 1753–1755.
- Rafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332-m1334.
- Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). *Acta Cryst.* E62, 03620–03622.

Acta Cryst. (2008). E64, m1298-m1299 [doi:10.1107/S1600536808029140]

$\label{eq:hermitian} Hemipiperazine diium bis (pyridine-2,6-dicarboxylato-\kappa^3O,N,O') gallate (III) pyridine-2,6-dicarboxylato-\kappa^3O,N,O') pyridine-2,6-dicarboxylato-\kappa^3O,N,O') pyridine-2,6-dicarboxylato-\kappa^3O,N,O') pyridine-2,6-dicarboxylato-\kappa^3O,N,O') pyridine-2,6-dicarboxylato-\kappa^3O,N,O') pyridine-2,6-dicarboxylato-\kappa^3O,N,O') p$

M. Rafizadeh, A. Nemati and Z. Derikvand

Comment

In continuation of our study of self-assembling systems $(pipzH_2)_3^{2+}[In(pydc)_3]_2^{3-}.12H_2O$, $(pipzH_2)^{2+}[Tl_2(pydc)_2Cl_4(H_2O)_2]^{2-}.4H_2O$ and some others (Aghabozorg *et al.*, 2006*a*,*b*), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related complexes of pyridine-2,6-dicarboxylate ligand with transition metals (Rafizadeh *et al.*, 2005; Rafizadeh, Mehrabi & Amani, 2006; Rafizadeh & Amani, 2006; Aghabozorg *et al.*, 2007, 2008). In the anion, the angles O1—Ga—O3 [158.69 (6)°], O5—Ga—O7 [158.65 (6)°] and N1—Ga—N2 [171.11 (7)°] indicate that the coordination environment around Ga^{III} ion is a distorted octahedron.

In the crystal, the π - π interactions (Table 1) and extensive three-dimensional network of intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) contribute to the crystal packing stability.

Experimental

The proton transfer compound (pipzH₂)(pydcH)₂.3H₂O, was prepared by the reaction of pyridine-2,6-dicarboxylic acid, pydcH₂, with piperazine, pipz, (Sheshmani *et al.*, 2006). The reaction between Ga(NO₃)₃.8H₂O (200.0 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound (pipzH₂)(pydcH)₂.3H₂O (253.0 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried by slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the –OH and –NH₂ groups as well as the water molecule were located in the difference Fourier map and refined in rigid model with fixed thermal ($U_{iso}(H) = 1.2Ueq(O \text{ or } N)$ for the –OH and –NH₂ groups and $U_{iso}(H) = 1.5Ueq(O)$ for the water molecule) parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed thermal parameters ($U_{iso}(H) = 1.2Ueq(C)$). The $U_{eq}(O, N \text{ or } C)$ are the equivalent thermal parameters of the oxygen, nitrogen and carbon atoms, respectively, to which corresponding H atoms are bonded. One water molecule (O14) was refined as disordered between two positions with the occupancies fixed to 0.5 each.

Figures

Fig. 1. Molecular structure of the title compound, showing the atomic numbering, 50% probability displacement ellipsoids and disordered water molecule. Hydrogen bonds are shown as dashed lines.

$Hemipiperazine diium \ bis (pyridine - 2, 6 - dicarboxylato - \kappa^3 O, N, O') gallate (III) \ pyridine - 2, 6 - dicarboxylic \ acid \ dihydrate$

Crystal data

$(C_4H_{12}N_2)_{0.5}[Ga(C_7H_3NO_4)_2] \cdot C_7H_5NO_4 \cdot 2H_2O$	Z = 2
$M_r = 647.16$	$F_{000} = 660$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.694 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.6434 (4) Å	Cell parameters from 6643 reflections
b = 11.8582 (5) Å	$\theta = 2.4 - 29.9^{\circ}$
c = 13.7907 (6) Å	$\mu = 1.17 \text{ mm}^{-1}$
$\alpha = 65.7151 \ (10)^{\circ}$	T = 120 (2) K
$\beta = 80.0391 \ (10)^{\circ}$	Prism, colourless
$\gamma = 86.9150 \ (11)^{\circ}$	$0.25\times0.20\times0.18~mm$
$V = 1268.74 (10) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	6067 independent reflections
Radiation source: fine-focus sealed tube	5263 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 120(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998a)	$h = -11 \rightarrow 11$
$T_{\min} = 0.749, \ T_{\max} = 0.807$	$k = -15 \rightarrow 15$
13018 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.099$ Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.043P)^2 + 2.120P]$ where $P = (F_0^2 + 2F_c^2)/3$

<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
6067 reflections	$\Delta \rho_{max} = 0.86 \text{ e } \text{\AA}^{-3}$
382 parameters	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Gal	0.69834 (3)	0.81449 (2)	0.236980 (18)	0.01489 (8)	
01	0.49972 (19)	0.87108 (15)	0.30323 (13)	0.0197 (3)	
O2	0.3151 (2)	0.80985 (17)	0.45133 (15)	0.0282 (4)	
O3	0.89040 (18)	0.71384 (14)	0.22836 (12)	0.0172 (3)	
O4	1.00566 (19)	0.53668 (15)	0.31985 (13)	0.0221 (3)	
05	0.82240 (19)	0.95577 (14)	0.22476 (13)	0.0196 (3)	
06	0.9372 (2)	1.13613 (15)	0.10526 (14)	0.0247 (4)	
07	0.56973 (18)	0.71043 (14)	0.19088 (12)	0.0175 (3)	
08	0.49004 (19)	0.70052 (14)	0.04916 (13)	0.0197 (3)	
N1	0.6764 (2)	0.69072 (16)	0.38696 (14)	0.0149 (3)	
N2	0.7106 (2)	0.91756 (16)	0.08145 (14)	0.0136 (3)	
C1	0.5515 (3)	0.6960 (2)	0.45659 (17)	0.0167 (4)	
C2	0.5309 (3)	0.6093 (2)	0.56250 (18)	0.0210 (4)	
H2A	0.4444	0.6131	0.6139	0.025*	
C3	0.6416 (3)	0.5158 (2)	0.59122 (18)	0.0219 (5)	
H3A	0.6310	0.4555	0.6635	0.026*	
C4	0.7666 (3)	0.5101 (2)	0.51542 (17)	0.0192 (4)	
H4A	0.8400	0.4452	0.5342	0.023*	
C5	0.7816 (3)	0.60203 (19)	0.41114 (17)	0.0156 (4)	
C6	0.4444 (3)	0.8002 (2)	0.40167 (18)	0.0191 (4)	
C7	0.9052 (3)	0.6166 (2)	0.31338 (17)	0.0166 (4)	
C8	0.7917 (2)	1.02317 (19)	0.04205 (17)	0.0153 (4)	
C9	0.8099 (3)	1.0982 (2)	-0.06768 (18)	0.0186 (4)	
H9A	0.8670	1.1745	-0.0976	0.022*	
C10	0.7412 (3)	1.0574 (2)	-0.13246 (18)	0.0203 (4)	
H10A	0.7516	1.1069	-0.2077	0.024*	
C11	0.6578 (3)	0.9454 (2)	-0.08861 (17)	0.0174 (4)	

Н11А	0.6120	0.0174	-0 1328	0 021*	
C12	0.6438 (2)	0.9174	0.1328	0.021 0.0147(4)	
C12	0.8575 (3)	1.0/39 (2)	0.02210(17) 0.12937(18)	0.0177(4)	
C14	0.8575(3)	0.75183(19)	0.09115 (17)	0.0172(4)	
09	0.58636(19)	0.73498(15)	0.14907 (13)	0.0131(4)	
H9O	0.5960	0.2683	0.0773	0.0210 (5)	
010	0.6888 (2)	0.25644 (16)	0 27682 (13)	0.0254 (4)	
011	0.6148(2)	0.53088(15)	-0.19160(13)	0.0217(3)	
H110	0.6047	0.4592	-0.1367	0.026*	
012	0 7671 (2)	0.69899 (16)	-0.25682(14)	0.0280 (4)	
N3	0.7038(2)	0 45536 (16)	0.00267 (14)	0.0157 (3)	
C15	0 7399 (2)	0 4193 (2)	0 10158 (17)	0.0167 (4)	
C16	0.8334 (3)	0.4892 (2)	0.12957 (18)	0.0195 (4)	
H16A	0.8564	0.4600	0.2007	0.023*	
C17	0.8921 (3)	0.6026 (2)	0.05116 (19)	0.0207 (4)	
H17A	0.9560	0.6529	0.0676	0.025*	
C18	0.8560 (3)	0.6413 (2)	-0.05174 (19)	0.0192 (4)	
H18A	0.8950	0.7184	-0.1072	0.023*	
C19	0.7612 (2)	0.56477 (19)	-0.07202 (17)	0.0158 (4)	
C20	0.6712 (3)	0.2969 (2)	0.18329 (18)	0.0182 (4)	
C21	0.7167 (3)	0.6045 (2)	-0.18171 (18)	0.0191 (4)	
N4	0.1327 (2)	0.08293 (17)	0.44706 (15)	0.0178 (4)	
H4B	0.0905	0.1566	0.4452	0.021*	
H4C	0.2365	0.0977	0.4152	0.021*	
C22	0.1227 (3)	-0.0079 (2)	0.56174 (17)	0.0183 (4)	
H22A	0.1770	0.0268	0.6012	0.022*	
H22B	0.1760	-0.0849	0.5644	0.022*	
C23	0.0474 (3)	0.0373 (2)	0.38454 (17)	0.0193 (4)	
H23A	0.0981	-0.0380	0.3808	0.023*	
H23B	0.0525	0.1012	0.3100	0.023*	
O13	0.9874 (2)	0.28616 (16)	0.46782 (16)	0.0303 (4)	
H13A	0.9995	0.3653	0.4063	0.045*	
H13B	0.8844	0.2583	0.4939	0.045*	
O14	0.4588 (4)	0.0692 (4)	0.3846 (3)	0.0273 (6)	0.50
H14B	0.4838	0.0384	0.3297	0.041*	0.50
O14'	0.4459 (4)	0.0981 (4)	0.4270 (3)	0.0273 (6)	0.50
H14C	0.4715	0.0321	0.4851	0.041*	0.50
H14A	0.5272	0.1322	0.3704	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gal	0.01791 (13)	0.01363 (12)	0.01235 (12)	-0.00172 (8)	-0.00268 (8)	-0.00423 (9)
01	0.0207 (8)	0.0183 (7)	0.0188 (8)	0.0022 (6)	-0.0022 (6)	-0.0070 (6)
O2	0.0233 (9)	0.0275 (9)	0.0299 (9)	0.0030 (7)	0.0045 (7)	-0.0114 (8)
O3	0.0182 (7)	0.0171 (7)	0.0150 (7)	-0.0004 (6)	-0.0020 (6)	-0.0055 (6)
O4	0.0207 (8)	0.0224 (8)	0.0225 (8)	0.0047 (6)	-0.0045 (6)	-0.0085 (7)
O5	0.0254 (8)	0.0175 (7)	0.0172 (7)	-0.0038 (6)	-0.0056 (6)	-0.0070 (6)

06	0.0277 (9)	0.0187 (8)	0.0281 (9)	-0.0082 (7)	-0.0054 (7)	-0.0086 (7)
07	0.0219 (8)	0.0161 (7)	0.0135 (7)	-0.0050 (6)	-0.0041 (6)	-0.0039 (6)
08	0.0232 (8)	0.0178 (7)	0.0201 (8)	-0.0044 (6)	-0.0056 (6)	-0.0082 (6)
N1	0.0157 (8)	0.0153 (8)	0.0133 (8)	-0.0020 (7)	-0.0018 (6)	-0.0055 (7)
N2	0.0136 (8)	0.0127 (8)	0.0129 (8)	0.0003 (6)	-0.0021 (6)	-0.0038 (6)
C1	0.0176 (10)	0.0184 (10)	0.0163 (10)	-0.0015 (8)	0.0001 (8)	-0.0101 (8)
C2	0.0266 (12)	0.0225 (11)	0.0154 (10)	-0.0037 (9)	0.0018 (8)	-0.0107 (9)
C3	0.0341 (13)	0.0176 (10)	0.0129 (10)	-0.0028 (9)	-0.0041 (9)	-0.0045 (8)
C4	0.0255 (11)	0.0163 (10)	0.0162 (10)	-0.0006 (8)	-0.0071 (8)	-0.0054 (8)
C5	0.0182 (10)	0.0137 (9)	0.0159 (10)	-0.0016 (8)	-0.0046 (8)	-0.0062 (8)
C6	0.0204 (11)	0.0180 (10)	0.0211 (10)	-0.0006 (8)	-0.0024 (8)	-0.0105 (8)
C7	0.0178 (10)	0.0176 (10)	0.0162 (10)	-0.0011 (8)	-0.0056 (8)	-0.0076 (8)
C8	0.0147 (9)	0.0128 (9)	0.0178 (10)	-0.0013 (7)	-0.0021 (8)	-0.0057 (8)
C9	0.0180 (10)	0.0146 (10)	0.0201 (10)	-0.0020 (8)	-0.0024 (8)	-0.0038 (8)
C10	0.0207 (11)	0.0210 (11)	0.0144 (10)	-0.0006 (8)	-0.0011 (8)	-0.0030 (8)
C11	0.0183 (10)	0.0191 (10)	0.0150 (10)	0.0008 (8)	-0.0046 (8)	-0.0065 (8)
C12	0.0135 (9)	0.0149 (9)	0.0169 (10)	0.0006 (7)	-0.0030(7)	-0.0075 (8)
C13	0.0170 (10)	0.0155 (10)	0.0183 (10)	-0.0007 (8)	-0.0035 (8)	-0.0059 (8)
C14	0.0138 (9)	0.0151 (9)	0.0163 (9)	-0.0001 (7)	-0.0024 (7)	-0.0064 (8)
09	0.0271 (8)	0.0175 (7)	0.0158 (7)	-0.0077 (6)	-0.0034 (6)	-0.0032 (6)
O10	0.0305 (9)	0.0269 (9)	0.0154 (8)	-0.0071 (7)	-0.0040 (7)	-0.0043 (7)
011	0.0283 (9)	0.0197 (8)	0.0155 (7)	-0.0052 (6)	-0.0070 (6)	-0.0035 (6)
012	0.0339 (10)	0.0209 (8)	0.0213 (8)	-0.0081 (7)	-0.0045 (7)	0.0002 (7)
N3	0.0173 (9)	0.0148 (8)	0.0161 (8)	-0.0028 (7)	-0.0026 (7)	-0.0071 (7)
C15	0.0166 (10)	0.0190 (10)	0.0145 (9)	0.0000 (8)	-0.0007 (8)	-0.0075 (8)
C16	0.0188 (10)	0.0245 (11)	0.0185 (10)	-0.0008 (8)	-0.0023 (8)	-0.0121 (9)
C17	0.0190 (10)	0.0236 (11)	0.0256 (11)	-0.0048 (8)	-0.0006 (9)	-0.0168 (9)
C18	0.0181 (10)	0.0154 (10)	0.0240 (11)	-0.0032 (8)	0.0007 (8)	-0.0093 (9)
C19	0.0167 (10)	0.0143 (9)	0.0161 (9)	-0.0012 (8)	-0.0006 (8)	-0.0064 (8)
C20	0.0164 (10)	0.0198 (10)	0.0175 (10)	-0.0018 (8)	-0.0020 (8)	-0.0069 (8)
C21	0.0189 (10)	0.0182 (10)	0.0187 (10)	-0.0024 (8)	-0.0015 (8)	-0.0061 (8)
N4	0.0179 (9)	0.0150 (8)	0.0186 (9)	-0.0022 (7)	-0.0011 (7)	-0.0054 (7)
C22	0.0209 (11)	0.0168 (10)	0.0169 (10)	0.0004 (8)	-0.0057 (8)	-0.0057 (8)
C23	0.0239 (11)	0.0184 (10)	0.0148 (10)	-0.0005 (8)	-0.0023 (8)	-0.0061 (8)
013	0.0278 (9)	0.0159 (8)	0.0394 (10)	-0.0010 (7)	0.0036 (8)	-0.0069 (7)
O14	0.0209 (11)	0.0258 (15)	0.0248 (18)	-0.0049 (10)	-0.0007 (13)	-0.0006 (11)
O14'	0.0209 (11)	0.0258 (15)	0.0248 (18)	-0.0049 (10)	-0.0007 (13)	-0.0006 (11)

Geometric parameters (Å, °)

Ga1—O51.9706 (16)O9—C201.328 (3)Ga1—N21.9709 (17)O9—H9O0.8922	Ga1—N1	1.9660 (18)	C12C14	1.521 (3)
Ga1—N2 1.9709 (17) 09—H9O 0.8922	Ga1—O5	1.9706 (16)	O9—C20	1.328 (3)
	Ga1—N2	1.9709 (17)	О9—Н9О	0.8922
Ga1—O3 2.0073 (16) O10—C20 1.212 (3)	Ga1—O3	2.0073 (16)	O10—C20	1.212 (3)
Ga1—O1 2.0175 (16) O11—C21 1.334 (3)	Ga1—O1	2.0175 (16)	O11—C21	1.334 (3)
Ga1—O7 2.0494 (15) O11—H11O 0.8710	Ga1—O7	2.0494 (15)	O11—H11O	0.8710
O1—C6 1.288 (3) O12—C21 1.208 (3)	O1—C6	1.288 (3)	O12—C21	1.208 (3)
O2—C6 1.232 (3) N3—C19 1.336 (3)	O2—C6	1.232 (3)	N3—C19	1.336 (3)
O3—C7 1.282 (3) N3—C15 1.340 (3)	O3—C7	1.282 (3)	N3—C15	1.340 (3)

O4—C7	1.236 (3)	C15—C16	1.390 (3)
O5—C13	1.296 (3)	C15—C20	1.498 (3)
O6—C13	1.218 (3)	C16—C17	1.387 (3)
O7—C14	1.272 (3)	C16—H16A	0.9500
O8—C14	1.234 (3)	C17—C18	1.387 (3)
N1—C5	1.326 (3)	С17—Н17А	0.9500
N1—C1	1.332 (3)	C18—C19	1.393 (3)
N2—C8	1.326 (3)	C18—H18A	0.9500
N2—C12	1.333 (3)	C19—C21	1.501 (3)
C1—C2	1.385 (3)	N4—C23	1.492 (3)
C1—C6	1.519 (3)	N4—C22	1.493 (3)
C2—C3	1.399 (3)	N4—H4B	0.9200
C2—H2A	0.9500	N4—H4C	0.9200
C3—C4	1.387 (3)	$C^{22}-C^{23^{i}}$	1.516 (3)
С3—НЗА	0.9500	C22—H22A	0.9900
C4—C5	1 391 (3)	C22—H22B	0.9900
C4—H4A	0.9500		1 516 (3)
	1,522 (2)	C23—C22	0.0000
C_{3}	1.323(3) 1.200(2)	C23—II23A	0.9900
C_{8}	1.590 (3)	C25—R25B	0.9900
C_{0}	1.320(3)	013—113A 012—112D	0.9080
C_{9}	1.598 (5)	013—n13B	0.9241
C10 C11	0.9300	014—III4B	0.9301
	1.595 (5)	014—H14A	0.9130
CI0—HI0A	0.9500	014—H14C	0.9120
C11 C12	1 202 (2)	014 11144	0.0201
C11—C12	1.393 (3)	O14'—H14A	0.9201
C11—C12 C11—H11A	1.393 (3) 0.9500	O14'—H14A	0.9201
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ	1.393 (3) 0.9500 3.5359 (13)	O14'—H14A Cg2…Cg2 ⁱⁱⁱ	0.9201 3.6550 (14)
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ N1—Ga1—O5	1.393 (3) 0.9500 3.5359 (13) 108.00 (7)	O14'—H14A Cg2…Cg2 ⁱⁱⁱ C10—C11—H11A	0.9201 3.6550 (14) 121.1
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7)	O14'—H14A Cg2…Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11	0.9201 3.6550 (14) 121.1 119.35 (19)
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7)	O14'—H14A Cg2…Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18)
C11—C12 C11—H11A Cg1···Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19)
C11—C12 C11—H11A Cg1···Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2)
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2)
C11—C12 C11—H11A $Cg1\cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O3 N1—Ga1—O1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7)	O14'—H14A Cg2…Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{1i}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 O3—Ga1—O1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O1 N1—Ga1—O1 N1—Ga1—O7	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7)	O14'—H14A Cg2Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4
C11—C12 C11—H11A Cg1…Cg1 ⁱⁱ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7)	O14'—H14A Cg2···Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N1—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7 O3—Ga1—O7	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6)	O14'—H14A Cg2Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7 O3—Ga1—O7 O1—Ga1—O7	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7)	O14'—H14A Cg2Cg2 ⁱⁱⁱ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N2—Ga1—O1 O5—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 O3—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 O5—Ga1—O7 O3—Ga1—O7 O1—Ga1—O7 C6—O1—Ga1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7) 115.97 (14)	O14'—H14A $Cg2Cg2^{iii}$ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20 C16—C15—C20	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19) 120.8 (2)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 O5—Ga1—O7 O5—Ga1—O7 O1—Ga1—O7 O1—Ga1—O7 C6—O1—Ga1 C7—O3—Ga1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7) 115.97 (14) 116.61 (14)	O14'—H14A $Cg2Cg2^{iii}$ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20 C16—C15—C20 C17—C16—C15	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19) 120.8 (2) 118.4 (2)
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N1—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7 O5—Ga1—O7 O5—Ga1—O7 C6—O1—Ga1 C7—O3—Ga1 C13—O5—Ga1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7) 115.97 (14) 116.61 (14) 116.85 (14)	O14'—H14A $Cg2Cg2^{iii}$ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20 C16—C15—C20 C17—C16—C15 C17—C16—H16A	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19) 120.8 (2) 118.4 (2) 120.8
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N2—Ga1—O1 O5—Ga1—O1 N2—Ga1—O1 N2—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7 N2—Ga1—O7 O3—Ga1—O7 O1—Ga1—O7 C6—O1—Ga1 C7—O3—Ga1 C13—O5—Ga1 C14—O7—Ga1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7) 115.97 (14) 116.61 (14) 116.85 (14) 116.91 (13)	O14'—H14A $Cg2Cg2^{iii}$ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—O5 O6—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20 C16—C15—C20 C17—C16—C15 C17—C16—H16A C15—C16—H16A	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19) 120.8 (2) 118.4 (2) 120.8 120.8
C11—C12 C11—H11A $Cg1 \cdots Cg1^{ii}$ N1—Ga1—O5 N1—Ga1—N2 O5—Ga1—N2 N1—Ga1—O3 O5—Ga1—O3 N2—Ga1—O3 N2—Ga1—O1 O5—Ga1—O1 O5—Ga1—O1 O5—Ga1—O1 O3—Ga1—O1 N1—Ga1—O7 O5—Ga1—O7 N2—Ga1—O7 O5—Ga1—O7 O5—Ga1—O7 O1—Ga1—O7 O1—Ga1—O7 C6—O1—Ga1 C7—O3—Ga1 C13—O5—Ga1 C14—O7—Ga1 C5—N1—C1	1.393 (3) 0.9500 3.5359 (13) 108.00 (7) 171.11 (7) 80.53 (7) 79.40 (7) 92.73 (7) 98.00 (7) 79.32 (7) 92.66 (7) 103.22 (7) 158.69 (6) 93.34 (7) 158.65 (6) 78.18 (7) 91.71 (6) 90.73 (7) 115.97 (14) 116.61 (14) 116.85 (14) 116.91 (13) 123.75 (19)	O14'—H14A $Cg2Cg2^{iii}$ C10—C11—H11A N2—C12—C11 N2—C12—C14 C11—C12—C14 O6—C13—O5 O6—C13—C8 O5—C13—C8 O5—C13—C8 O8—C14—O7 O8—C14—C12 O7—C14—C12 C20—O9—H9O C21—O11—H11O C19—N3—C15 N3—C15—C16 N3—C15—C20 C16—C15—C20 C17—C16—H16A C15—C16—H16A C16—C17—C18	0.9201 3.6550 (14) 121.1 119.35 (19) 111.43 (18) 129.22 (19) 126.4 (2) 119.7 (2) 113.88 (18) 125.60 (19) 119.95 (19) 114.45 (18) 111.7 111.4 117.42 (18) 123.5 (2) 115.68 (19) 120.8 (2) 118.4 (2) 120.8 118.9 (2)

C1—N1—Ga1	118.25 (15)	C18—C17—H17A	120.6
C8—N2—C12	124.25 (18)	C17—C18—C19	118.6 (2)
C8—N2—Ga1	116.74 (14)	C17—C18—H18A	120.7
C12—N2—Ga1	118.95 (14)	C19—C18—H18A	120.7
N1—C1—C2	119.9 (2)	N3—C19—C18	123.2 (2)
N1—C1—C6	111.16 (18)	N3—C19—C21	116.56 (19)
C2—C1—C6	128.9 (2)	C18—C19—C21	120.18 (19)
C1—C2—C3	117.7 (2)	O10—C20—O9	120.9 (2)
C1—C2—H2A	121.1	O10-C20-C15	122.2 (2)
С3—С2—Н2А	121.1	O9—C20—C15	116.82 (19)
C4—C3—C2	120.8 (2)	O12-C21-O11	121.3 (2)
С4—С3—НЗА	119.6	O12—C21—C19	122.4 (2)
С2—С3—НЗА	119.6	O11—C21—C19	116.24 (19)
C3—C4—C5	118.2 (2)	C23—N4—C22	111.88 (16)
C3—C4—H4A	120.9	C23—N4—H4B	109.2
C5—C4—H4A	120.9	C22—N4—H4B	109.2
N1—C5—C4	119.5 (2)	C23—N4—H4C	109.2
N1—C5—C7	111.65 (18)	C22—N4—H4C	109.2
C4—C5—C7	128.8 (2)	H4B—N4—H4C	107.9
O2—C6—O1	125.6 (2)	N4—C22—C23 ⁱ	110.48 (17)
O2—C6—C1	119.7 (2)	N4—C22—H22A	109.6
O1—C6—C1	114.70 (19)	C23 ⁱ —C22—H22A	109.6
O4—C7—O3	125.8 (2)	N4—C22—H22B	109.6
O4—C7—C5	120.05 (19)	C23 ⁱ —C22—H22B	109.6
O3—C7—C5	114.15 (18)	H22A—C22—H22B	108.1
N2—C8—C9	119.8 (2)	N4—C23—C22 ⁱ	109.99 (18)
N2-C8-C13	111.98 (18)	N4—C23—H23A	109.7
C9—C8—C13	128.25 (19)	C22 ⁱ —C23—H23A	109.7
C8—C9—C10	117.6 (2)	N4—C23—H23B	109.7
С8—С9—Н9А	121.2	C22 ⁱ —C23—H23B	109.7
С10—С9—Н9А	121.2	H23A—C23—H23B	108.2
С11—С10—С9	121.2 (2)	H13A—O13—H13B	114.1
C11-C10-H10A	119.4	H14B—O14—H14C	137.1
С9—С10—Н10А	119.4	H14B—O14—H14A	109.3
C12—C11—C10	117.8 (2)	H14C—O14—H14A	87.3
C12—C11—H11A	121.1	H14C—O14'—H14A	115.4
N1—Ga1—O1—C6	-6.27 (15)	N1—C1—C6—O1	-6.8 (3)
O5—Ga1—O1—C6	-114.09 (16)	C2—C1—C6—O1	176.0 (2)
N2—Ga1—O1—C6	165.03 (15)	Ga1—O3—C7—O4	171.78 (17)
O3—Ga1—O1—C6	-9.6 (3)	Ga1—O3—C7—C5	-6.4 (2)
O7—Ga1—O1—C6	87.00 (16)	N1—C5—C7—O4	-174.74 (19)
N1—Ga1—O3—C7	5.46 (15)	C4—C5—C7—O4	3.7 (3)
O5—Ga1—O3—C7	113.27 (15)	N1—C5—C7—O3	3.5 (3)
N2—Ga1—O3—C7	-165.92 (15)	C4—C5—C7—O3	-178.0 (2)
O1—Ga1—O3—C7	8.8 (3)	C12—N2—C8—C9	0.5 (3)
O7—Ga1—O3—C7	-87.62 (15)	Ga1—N2—C8—C9	177.69 (16)
N1—Ga1—O5—C13	175.84 (15)	C12—N2—C8—C13	-178.39 (18)

N2—Ga1—O5—C13	-1.56 (16)	Ga1—N2—C8—C13	-1.2 (2)			
O3—Ga1—O5—C13	96.10 (16)	N2-C8-C9-C10	-0.4 (3)			
O1-Ga1-O5-C13	-104.53 (16)	C13—C8—C9—C10	178.3 (2)			
O7—Ga1—O5—C13	-5.7 (3)	C8—C9—C10—C11	-0.1 (3)			
N1—Ga1—O7—C14	-174.98 (16)	C9-C10-C11-C12	0.6 (3)			
O5-Ga1-O7-C14	6.5 (3)	C8—N2—C12—C11	0.0 (3)			
N2-Ga1-O7-C14	2.31 (15)	Ga1—N2—C12—C11	-177.16 (15)			
O3—Ga1—O7—C14	-95.50 (15)	C8—N2—C12—C14	179.72 (18)			
O1—Ga1—O7—C14	105.67 (15)	Ga1-N2-C12-C14	2.6 (2)			
O5—Ga1—N1—C5	-92.75 (16)	C10-C11-C12-N2	-0.5 (3)			
O3—Ga1—N1—C5	-3.32 (15)	C10-C11-C12-C14	179.8 (2)			
O1—Ga1—N1—C5	177.91 (16)	Ga1—O5—C13—O6	-177.41 (19)			
O7—Ga1—N1—C5	87.80 (16)	Ga1—O5—C13—C8	1.3 (2)			
O5—Ga1—N1—C1	91.47 (16)	N2-C8-C13-O6	178.7 (2)			
O3—Ga1—N1—C1	-179.09 (17)	C9—C8—C13—O6	0.0 (4)			
O1—Ga1—N1—C1	2.14 (15)	N2-C8-C13-O5	-0.1 (3)			
O7—Ga1—N1—C1	-87.97 (16)	C9—C8—C13—O5	-178.9 (2)			
O5—Ga1—N2—C8	1.50 (15)	Ga1—O7—C14—O8	178.77 (17)			
O3—Ga1—N2—C8	-89.95 (16)	Ga1-07-C14-C12	-1.6 (2)			
O1—Ga1—N2—C8	92.02 (16)	N2-C12-C14-O8	179.09 (19)			
O7—Ga1—N2—C8	179.97 (16)	C11—C12—C14—O8	-1.2 (3)			
O5—Ga1—N2—C12	178.85 (16)	N2-C12-C14-O7	-0.6 (3)			
O3—Ga1—N2—C12	87.40 (16)	C11—C12—C14—O7	179.2 (2)			
O1—Ga1—N2—C12	-90.63 (16)	C19—N3—C15—C16	-0.2 (3)			
O7—Ga1—N2—C12	-2.69 (15)	C19—N3—C15—C20	179.14 (19)			
C5—N1—C1—C2	3.5 (3)	N3-C15-C16-C17	0.2 (3)			
Ga1—N1—C1—C2	179.03 (16)	C20-C15-C16-C17	-179.1 (2)			
C5—N1—C1—C6	-173.91 (19)	C15-C16-C17-C18	-0.3 (3)			
Ga1—N1—C1—C6	1.6 (2)	C16-C17-C18-C19	0.3 (3)			
N1-C1-C2-C3	-2.1 (3)	C15—N3—C19—C18	0.2 (3)			
C6—C1—C2—C3	174.9 (2)	C15—N3—C19—C21	-178.88 (19)			
C1—C2—C3—C4	-0.7 (3)	C17-C18-C19-N3	-0.3 (3)			
C2—C3—C4—C5	2.1 (3)	C17—C18—C19—C21	178.8 (2)			
C1—N1—C5—C4	-2.1 (3)	N3-C15-C20-O10	-176.5 (2)			
Ga1—N1—C5—C4	-177.58 (15)	C16-C15-C20-O10	2.9 (3)			
C1—N1—C5—C7	176.57 (19)	N3—C15—C20—O9	2.1 (3)			
Ga1—N1—C5—C7	1.0 (2)	C16—C15—C20—O9	-178.5 (2)			
C3—C4—C5—N1	-0.8 (3)	N3-C19-C21-O12	-176.7 (2)			
C3—C4—C5—C7	-179.1 (2)	C18—C19—C21—O12	4.1 (3)			
Ga1—O1—C6—O2	-170.02 (19)	N3-C19-C21-O11	4.8 (3)			
Ga1—O1—C6—C1	8.8 (2)	C18—C19—C21—O11	-174.3 (2)			
N1—C1—C6—O2	172.1 (2)	C23—N4—C22—C23 ⁱ	-57.1 (3)			
C2—C1—C6—O2	-5.1 (4)	C22—N4—C23—C22 ⁱ	56.8 (2)			
Symmetry codes: (i) $-r - v - \tau + 1$: (ii) $-r + 2 - v + 1 - \tau$: (iii) $-r + 1 - \tau + 1 - \tau + 1$						

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

N4—H4B···O13 ^{iv}	0.92	1.84	2.754 (3)	169
N4—H4C…O14	0.92	1.94	2.818 (4)	160
N4—H4C…O14'	0.92	1.85	2.681 (4)	150
O9—H9O…O8 ^v	0.89	1.90	2.710 (2)	150
011—H110···08 ^v	0.87	1.91	2.725 (2)	155
O13—H13A…O4	0.97	1.88	2.823 (3)	163
O13—H13B···O2 ⁱⁱⁱ	0.92	1.84	2.765 (3)	175
O14—H14A…O10	0.91	1.95	2.798 (5)	153
O14—H14B···O1 ^{vi}	0.96	2.15	2.974 (5)	143
O14'—H14C…O14 ^{vii}	0.91	1.89	2.774 (6)	164
N4—H4C···O12 ^v	0.92	2.50	2.863 (3)	104
O9—H9O…N3	0.89	2.20	2.678 (3)	113
O11—H11O…N3	0.87	2.22	2.690 (2)	114
C3—H3A···O11 ^{viii}	0.95	2.48	3.042 (3)	117
C9—H9A···O3 ^{ix}	0.95	2.54	3.341 (3)	143
С17—Н17А…ОЗ	0.95	2.57	3.217 (3)	126
C18—H18A···O6 ^{ix}	0.95	2.32	3.026 (3)	130
C22—H22A···O5 ⁱⁱⁱ	0.99	2.49	3.360 (3)	146
C22—H22B···O2 ^{vi}	0.99	2.50	3.346 (3)	144
C23—H23A···O2 ^{vi}	0.99	2.56	3.391 (3)	142

Symmetry codes: (iv) x-1, y, z; (v) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (vi) x, y-1, z; (vii) -x+1, -y, -z+1; (viii) x, y, z+1; (ix) -x+2, -y+2, -z.

